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Abstract. Using a recently introduced formalism we discuss slow-roll inflation from Kaluza–Klein theory
without the cylinder condition. In particular, some examples corresponding to polynomic and hyperbolic
φ-potentials are studied. We find that the evolution of the fifth coordinate should be determinant for both
the evolution of the early inflationary universe and the quantum fluctuations.

1 Introduction

The possibility that our universe is embedded in a higher
dimensional space has generated a great deal of active in-
terest. In brane-world (BW) [1–3] and space-time-matter
(STM) [4] theories the usual constraint on Kaluza–Klein
(KK) models, namely the cylinder condition, is relaxed
so the extra dimensions are not restricted to be compact.
An alternative idea pertaining to geometrical compactifi-
cation has been explored by Randall and Sundrum [5], who
demonstrated that for sufficiently low energies the proba-
bility of losing energy to the KK states is very small. The
first important question concerning solutions in 5D is to
check whether they give back the standard 4D results. In
particular, cosmological models should be developed from
a Friedmann–Robertson–Walker (FRW) cosmology.

Inflation has nowadays become a standard ingredient
for the description of the early universe. In fact, it solves
some of the problems of the standard big-bang scenario
and also makes predictions about cosmic microwave back-
ground radiation (CMBR) anisotropies which are being
measured with higher and higher precision. The first model
of inflation was proposed by Starobinsky in 1979 [6]. A
much simpler inflationary model with a clear motivation
was developed by Guth in the 80’s [7], in order to solve
some of the shortcomings of the big-bang theory, and in
particular, to explain the extraordinary homogeneity of the
observable universe. However, the universe after inflation
in this scenario becomes very inhomogeneous. Following
a detailed investigation of this problem, Guth and Wein-
berg concluded that the old inflationary model could not
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be improved [8]. These problems were sorted out by Linde
in 1983 with the introduction of chaotic inflation [9]. In
this scenario inflation can occur in theories with potentials
such as V (φ) ∼ φn. It may begin in the absence of thermal
equilibrium in the early universe, and it may start even
at the Planck density, in which case the problem of initial
conditions for inflation can be easily solved [10].

Recently there has been significant progress made in
the field of string cosmology [11,12]. Arguably, among the
greatest triumphs are the string realizations of the infla-
tionary universe paradigm [13]. Moreover, inflationary cos-
mology from STM models has been a subject of great in-
terest in the last years [14–16]. In a novel approach recently
developed [17] it was suggested that the evolution of the
early universe could be described by a geodesic trajectory
of a 5D metric, so that the effective 4D FRW background
metric should be a hypersurface on a constant fifth di-
mension. In this paper we extend this approach to other
inflationary models.

This work is organized as follows: in Sect. 2 the formal-
ism proposed in [17] is reviewed and extended. In Sect. 3
we study inflationary dynamics taking into account the
slow-roll conditions. Section 4 discusses inflationary mod-
els coming from polynomic (quadratic and quartic) and
hyperbolic φ-potentials. Finally, in Sect. 5 we develop some
final comments.

2 Formalism reviewed and extended

We consider the 5D metric, recently introduced by Ledesma
and Bellini (LB) [17]

dS2 = ψ2dN2 − ψ2e2Ndr2 − dψ2 , (1)
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where the parameters (N, r) are dimensionless, and the
fifth coordinate ψ has spatial unities. The metric (1) de-
scribes a flat 5D manifold in apparent vacuum (GAB = 0).
Furthermore, on hypersurfaces ψ = const. the 4D induced
pressure (p) and energy density (ρ) are given by

p = − 3
8πGψ2 , ρ =

3
8πGψ2 , (2)

such that the 4D equation of state on hypersurfaces with
constant ψ is p = −ρ, which corresponds to a vacuum.
Hence, systems in an apparent vacuum on hypersurfaces
with constant ψ in a 5D manifold described by (1) comply
with a 4D vacuum equation of state. In particular, the case
for which the squared Hubble parameter is given by H2

0 =
Λ/(3ψ2) represents a de Sitter expansion [19] governed by
the cosmological constant Λ.

As in [17] we shall consider the case where N only
depends on the cosmic time t: N = N(t). The relevant
Christoffel symbols for the geodesic of the metric (1) in a
comoving frame Ur = ∂r/∂S = 0 are

ΓNψψ = 0 , ΓNψN = 1/ψ , ΓψNN = ψ , ΓψNψ = 0 , (3)

so that the geodesic dynamics dUC

dS = ΓCABU
AUB is de-

scribed by the following equations of motion for the veloc-
ities UA:

dUN

dS
= − 2

ψ
UNUψ , (4)

dUψ

dS
= −ψUNUN , (5)

ψ2UNUN − UψUψ = 1 , (6)

where (6) describes the constraint condition gABUAUB =
1. From the general solution ψUN = cosh[S(N)], Uψ =
−sinh[S(N)], we obtain the equation that describes the
geodesic evolution for ψ:

dψ
dN

=
Uψ

UN
= −ψtanh[S(N)] , (7)

where S(N) = −N gives the number of e-folds of the
universe. If we take tanh[S(N)] = −1/u(N), we obtain

ψ(N) = ψ0e
∫

dN/u(N) , (8)

for the velocities

Uψ = − 1√
u2(N) − 1

, UN =
u(N)

ψ
√
u2(N) − 1

, (9)

where ψ0 in (8) is a constant of integration. As in a previous
paper [17], we are interested in the case in which ψ = H−1,
whereH is the classical Hubble parameter. With this choice
the constant ψ0 = H−1

0 describes the primordial Hubble
horizon, which should be of the order of the Planck length.
Furthermore, the function u is given by u(N) = − H

dH/dN >

0, because dH/dN < 0 during inflation.

The resulting 5D metric is given by

dS2 = dt2 − e2
∫
H(t)dtdR2 − dL2 , (10)

with t =
∫
ψ(N)dN , R = rψ and L = ψ0. With this

representation,we obtain the following newvelocities ÛA =
∂x̂A

∂xB U
B :

U t =
2u(t)√
u2(t) − 1

, UR =
−2r√
u2(t) − 1

, UL = 0 ,

(11)
where the old velocities UB are UN , Ur = 0 and Uψ. Fur-
thermore, the velocities ÛB complywith the constraint con-
dition

ĝABÛ
AÛB = 1 . (12)

The important fact here is that the new frame gives us an
effective spatially flat FRW metric embedded in a 5D man-
ifold where the fifth coordinate L = ψ0 is the primordial
Hubble horizon, which emerges naturally as a constant in
this representation.

The solution N = arctanh[1/u(t)] corresponds to a
power-law expanding universe with time dependent power
p(t) for a scale factor a ∼ tp(t). Since H(t) = ȧ/a, the
resulting Hubble parameter is

H(t) = ṗln(t/t0) + p(t)/t, (13)

where t0 is the initial time. The function u written as a
function of time is

u(t) = −H2

Ḣ
, (14)

where the dot represents the derivative with respect to
the time.

With this representation the universe can be viewed
as born in a state with S � 0 (i.e., in a 4D vacuum state
p � −ρ), where the fifth coordinate is given by the Hubble
horizon in a comoving frame dr = 0, such that the effective
4D spacetime is a FRW metric

dS2 = dt2 − e2
∫
H(t)dtdR2 − dL2 →

ds2 = dt2 − e2
∫
H(t)dtdR2 . (15)

In this framework we can define the 5D lagrangian

L(φ, φ,A) = −
√

−(5)g

[
1
2
gABφ,Aφ,B + V (φ)

]
, (16)

for the scalar field φ(N, r, ψ) with the metric (1). Here, (5)g
is the determinant of the 5D metric tensor in (1) and V (φ)
is the potential. On the geodesic N = arctanh[1/u(t)] in
the comoving frame dr = 0, the effective 4D lagrangian for
the metric (15) is

L (φ, φ,A) → (17)

L (φ, φ,µ) = −
√

−(4)g

[
1
2
gµνφ,µφ,ν + V (φ)

]
,
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where (4)g is the determinant of the metric tensor in the
4D effective FRW background metric (15) and φ(t, R, L) ≡
φ(t, R). In this frame, the 4D energy density and the pres-
sure are [17]

8πGρ = 3H2 , (18)

8πGp = −(3H2 + 2Ḣ) , (19)

with H(t) = ȧ/a for a given scale factor a(t) ∼ tp(t) and
L = ψ0 is of the order of the Planck length. As was em-
phasized in a previous work [17] such a formalism can be
successfully applied to many inflationary models. With the
aim to illustrate this, in the following section we shall study
some inflationary models. V (φ) ∼ φn.

3 Slow-roll inflation

The dynamics of the inflaton field during inflation is char-
acterized by the equations

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (20)

φ̇ = −M2
P

4π
H ′(φ) , (21)

where the prime denotes the derivative with respect to φ.
If the slow-roll conditions [18] are fulfilled,

γ =
M2

P

4π

(
H ′

H

)2

� 1 , η =
M2

P

4π
H ′′

H
� 1 , (22)

the Friedmann equation can be approximated by

H2 � 8π
3M2

P
V (φ) , (23)

such that H ′ �
√

4π
3
√

2MP

V ′
V 1/2 , and (21) can be approxi-

mated by

φ̇ � − V ′

3H
= − MP√

4π
V ′

V 1/2 . (24)

In other words, slow-roll conditions imply that

3
8πGψ2 � V (φ) , (25)

where G = M−2
P is the gravitational constant and MP =

1.2 1019 GeV is the Planck mass. This is a very important
expression that says us that the evolution of the universe
[governed by V (φ)] has its origin in the evolution of the fifth
dimension ψ = H−1. The expression (25) is approximately
fulfilled in the early universe before the inflaton field begins
to oscillate around theminimumof the potentialV (φ).Note
that the function u, written as a function of φ, becomes

u(φ) =
4π
M2

P

(
H

H ′

)2

, (26)

which is exactly the inverse of the slow-roll parameter γ [see
the first equation in (22)]: u = 1/γ. Hence, the condition

u � 1 is guaranteed during inflation. This is a very general
result valid for all the models of inflation. Furthermore the
condition u � 1 says us that the velocities (11) are real.
They can be written in terms of the Hubble parameter,

U t =
2
(
H
H′
)2√(

H
H′
)4 − M4

P
16π2

, (27)

UR = − 2r√
16π2

(
H

H′MP

)4
− 1

, UL = 0 .

Furthermore, since u � 1 during inflation, we can approx-
imate the velocities (27)

U t � 2 , UR � −2rγ , UL = 0 . (28)

The constraint condition (12) implies that (for γ0 =
√

3
2r )

γ � γ0
a0

a(t)
� 1 , (29)

which holds for all t ≥ t0 and r � 1. Note that (29) has its
origin in a geometrical property; the condition (12). The
constraint condition (29) can be written as

u(t)a0 � u0a(t) , (30)

where u0 = r/
√

3 � 1 and u(t) = −H2/Ḣ.
Potentials like

V (φ) =
λ

n
φn , (31)

are interesting for inflationary cosmology. For these poten-
tials (24) becomes

φ̇ = − MP√
4π

√
nλφ

n−2
2 , (32)

with solutions

φ
4−n

2 (t) = φ
4−n

2
0 − MP

√
nλ(4 − n)
4
√

π
t, (33)

φ(t) = φ0e−
√

λ
6π t , (34)

for n 	= 4 and n = 4, respectively. Here, φ0 is the initial
value of the scalar field: φ0 ≡ φ(t0) ≥ φ(t) for symmetric
potentials V (φ) = V (−φ), such that V (φ0) � M4

P. For any
n, the scale factor a(t) = a0 (t/t0)

p(t) can be written as a
function of φ(t):

a(t)
a0

= e
2π

nM2
P

√
2/3[φ2

0−φ2(t)]
. (35)

During inflation the amplitudes of the quantum fluctua-
tions are of the order of the Hubble parameter: |δφ| �
H
2π [10, 20], so that

|δφ| � 1
2πψ

; (36)
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|δφ| is dominated by the evolution of the fifth coordinate.
Furthermore, inflation ends when the inflaton field assumes
the value φe � nMP

4
√

3π . Since H = ȧ/a, from (13) and (35)
we obtain the temporal dependence of the time-dependent
power p(t) [written as a function of φ(t)]

p(t) =
2π
nM2

P

√
2/3

[
φ2

0 − φ2(t)
]

ln
[
t
t0

] , (37)

and, with more generality,

p(t) =
N(t)

ln
[
t
t0

] , (38)

where N(t) =
∫ t
t0
H(t′)dt′ is the number of e-folds from t0

to t.
In order to illustrate the generality of the formalism

here studied, in the next section we shall develop some
particular inflationary examples described by symmetric
φ-potentials.

4 Some examples

Slow-roll inflation is well described by symmetric potentials
like (31) or V (φ) ∼ sinh2(βφ). In this section we shall study
the dynamics of slow-roll inflation in quadratic, quartic and
hyperbolic φ-potentials.

4.1 Massive scalar field

As a first example we consider a massive scalar field de-
scribed by a quadratic potential V (φ) = m2

2 φ2. This case
corresponds to λ = m2 and n = 2 in (31). Its temporal
dependence is described by (33), so that

φ(t) = φ0 − MPm√
2π

t, (39)

where m is the mass of the inflaton field. The Hubble
parameter can be written as a function of φ:

H(φ) � 2
√

π
3
m

MP
φ , (40)

and p(t) can be obtained from (38),

p(t) =

√
2
3

π
m

MP

t

ln(t/t0)

(√
2
π
φ0 − mMP

2π
t

)
, (41)

where φ0 > 1
2

√
1
2πmMPte (te is the time at the end of

inflation), due to the fact that p > 0 in an expanding
universe. In particular, p > 1 during the inflationary epoch.
Note that p decreases with time during inflation. Thus, at
the beginning p should take a value very large that decreases
until values very close to p � 1 at the end of inflation. The

function u [see (26)], can be written as a function of the
inflaton field,

u(φ) =
4π
M2

P
φ2 , (42)

which is u � 1 because during inflation the slow-roll con-
ditions imply

φ2 � M2
P

4π
. (43)

The velocities (27) can be written as a function of the
inflaton field,

U t =
2√

1 − M4
P

16π2φ4

� 2 ,

UR =
−2r√

16π2φ4

M4
P

− 1
� −2rγ(φ) .

(44)

The number of e-folds and the evolution of the fifth coor-
dinate can be written as a function of the inflaton field,

N(φ) =
π

2M2
P

√
2
3
(
φ2

0 − φ2) , (45)

ψ(φ) =
1
2

√
3
π
MP

m
φ−1 , (46)

where φ0 =
√

2
m M2

P is the initial value of the inflaton field,
MP

2
√

3π < φ < φ0 and the initial value of the fifth coordinate
ψ0 = H−1

0 is of the order of the Planck length:

ψ0 � 1
2

√
3
2π

1
MP

. (47)

4.2 Self-interacting scalar field

Another interesting example that describes a self-inter-
acting scalar field is given by the quartic potential V (φ) =
λ
4 φ

4. Here, λ � 1 is a dimensionless constant and the
classical evolution for the inflaton field is given by (34).
The Hubble parameter is

H(φ) � 1
MP

√
2πλ
3
φ2 , (48)

and the temporal evolution for φ(t) is given by (34). Hence,
the temporal dependence for p(t) is

p(t) =
φ2

0√
6M2

Pln(t/t0)

(
1 − e−2

√
λ
6π t
)
, (49)

for t > M−1
P . Note that p decreases with time. The function

u is given by

u(φ) � φ2

M2
P

� 1 , (50)
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such that φ2 � M2
P. The velocities (27) for a model V (φ) =

λ
4 φ

4 become

U t =
2√

1 − M4
P

φ4

� 2 , UR =
−2r√
φ4

M4
P

− 1
� −2rγ(φ) .

(51)
On the other hand, the number of e-folds and the evolution
of the fifth coordinate can be related to the inflaton field,

N(φ) =
π

4M2
P

√
2
3
(
φ2

0 − φ2) , (52)

ψ(φ) = MP

√
3

2πλ
φ−2 , (53)

where φ0 =
( 4
λ

)1/4
MP > φ > MP√

3π and ψ0 � 1
2

√
3
2π

1
MP

,
which is exactly the value we found for a massive scalar
field [see (47)].

4.3 Hyperbolic potential

As a third example we consider a symmetric potential
given by

V (φ) = V0 sinh2(βφ) , (54)

where the parameter β > 0 has dimensions of the inverse
of the mass. The dynamics of the inflaton field is given by

φ̇ � − 2V 1/2
0 MPβ√

24π
cosh(βφ) , (55)

so that the temporal evolution of the inflaton field yields

φ(t) = φ0 − ln
{

tan
[
−

√
24π

β2M3
P
t

]}
. (56)

The Hubble parameter is

H(φ) �
√

8π
3
V

1/2
0

MP
sinh(βφ) , (57)

so that the number of e-folds is

N [φ(t)] =
1
2β

{ln [tanh (βφ(t)) − 1] (58)

+ ln [tanh (βφ(t)) + 1]}φ0
φ(t) ,

where φ(t) is given by (56). The slow-roll parameter γ
[see (22)] for this model is

γ(φ) � M2
P

4π
β2coth2(βφ) , (59)

which complies with the slow-roll conditions for βφ0 � 1
for β � M−1

P . Note that, as in the other examples, slow-
roll conditions imply that φmust take trans-Planck values.
Furthermore, the functionu � 1 for this inflationary model
is given by

u(φ) � 4π
M2

Pβ
2 tanh2(βφ) . (60)

Finally, the evolution of the fifth coordinate can be written
as a function of φ:

ψ(φ) �
√

3
8π

MP

V
1/2
0

sech(βφ) , (61)

so that the value of the fifth corrdinate in the metric (11)

should be ψ0 � 1
2

√
3
2π

1
MP

sech(βφ0) � 1
2

√
3
2π

1
MP

, which
agree quite well with the value obtained in the other exam-
ples. To finalize, in this case the evolution of the power-law
p(t) for the scale factor, will be given by (38),

p(t) =
1

2βln(t/t0)
{ln [tanh (βφ(t)) − 1]

+ ln [tanh (βφ(t)) + 1]}φ0
φ(t) , (62)

which decreases during the inflationary stage.

5 Final comments

We have studied inflationary dynamics from non-compact
KK theory. With this representation the universe can be
viewed as born in a state with S � 0 (i.e., in a 4D vacuum
state p � −ρ), where the fifth coordinate is given by the
Hubble horizon in a comoving frame dr = 0, such that the
effective 4D spacetime is a FRW metric:

dS2 = dt2 − e2
∫
H(t)dtdR2 − dL2 →

ds2 = dt2 − e2
∫
H(t)dtdR2 .

In this frame, the effective 4D energy density and the pres-
sure are

8πGρ = 3H2 , 8πGp = −(3H2 + 2Ḣ) .

In particular, slow-roll inflation was discussed for φ-sym-
metric polynomial (quadratic and quartic) and hyperbolic
potentials. Note that the initial length ψ0 we found corre-
sponds to the primordial Hubble horizon H−1

0 . In all the
cases here studied its value becomes below (but of the order

of) the Planck length: ψ0 � 1
2

√
3
2π

1
MP

� 0.346× 10−34 m.

Thus, L � 0.346× 10−34 m should be the value of the spa-
tial fifth coordinate in the metric (15). Another remarkable
result of this paper resides in that the dynamics in slow-roll
inflation is governed by the evolution of the fifth coordi-
nateψ = H−1 through the geodesicN = arctan(1/u), such
that the expression 3

8πGψ2 � V (φ) is fulfilled. Furthermore,
the quantum fluctuations are also given by ψ: |δφ| � 1

2πψ .
Finally, the formalism could be extended to models with
constant or variable cosmological parameters Λ. However,
this topic would go beyond the scope of this paper.

Acknowledgements. EMA acknowledges CONACyT and IFM
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